Call for papers

Call for papers for a Special Column in Current Zoology on ‘Rhythm and Synchrony in Animal Movement and Communication’, published by Oxford University Press.

Guest Editor: 
Andrea Ravignani, PhD
Pegasus Marie-Curie fellow
Veterinary & Research Dpt., Sealcentre Pieterburen
Max Planck Inst. for Psycholinguistics
AI-Lab, Vrije Universiteit Brussel
andrea.ravignani@gmail.com
ravignani.wordpress.com

Deadline for title submission: 1 February 2018
Deadline for manuscript submission: 10 April 2018

Overview. All forms of animal communication and behaviour develop over time. Accordingly, the temporal dimension of animal vocal and motoric behaviours often has communicative relevance and shows structural patterning. Several species’ brains are particularly efficient in perceiving, producing, and processing fine rhythmic information in communicative signals, especially in the audition, vision and movement. This perspective is becoming increasingly relevant, as the focus of several research disciplines in zoology and animal behaviour has moved from e.g. spectral analysis of sounds or descriptive analysis of movements to the study of individual rhythms and group synchronised behaviour. Rhythm, intended as temporal structure in the second-millisecond range, and synchrony, defined as precise co-occurrence of behaviours in time, are taking center stage in the study of animal behaviour and communication. A number of critical questions which remain to be answered are, among others and apart from those suggested in the references below: Why and how does each species’ sensitivity for rhythm arise? What are the functions of rhythm and synchrony? How did rhythmic behaviours develop in the evolution of different taxonomic groups? How do environmental rhythms affect the evolution of brain rhythms? Which rhythm-specific neural circuits are shared between domains and modalities? This Special Issue aims at collecting and putting in perspective a large body of research from different species, perceptual modalities, and empirical methods. Crucially, the focus is on timing, rhythmic and synchronous behaviour and perception in the second-millisecond range. Submissions dealing with human behaviour will be considered as long as they show a clear evolutionary or ethological focus.

Logistics. A title should be sent to the guest editor and manuscripts should be submitted before the deadline. Submitted papers should not have been published previously, nor will be under consideration for publication elsewhere. Publication is Open Access and free of page charges. Additional information can be found in the official call for papers on the journal’s webpage.

References

  • Alexander, R. D. (1975). “Natural selection and specialized chorusing behavior in acoustical insects,” in Insects, Science and Society, ed. D. Pimentel (New York: Academic Press), 35–77.
  • Bermejo, M., and Omedes, A. (2000). Preliminary vocal repertoire and vocal communication of wild bonobos (Pan paniscus) at Lilungu (Democratic Republic of Congo). Folia Primatol. (Basel) 70, 328–357. doi: 10.1159/000021717
  • Bolton, T. L. (1894). Rhythm. Am. J. Psychol. 6, 145–238. doi: 10.2307/1410948
  • Buck, J., and Buck, E. (1968). Mechanism of rhythmic synchronous of fireflies fireflies of Southeast Asia may use anticipatory time-measuring in synchronizing their flashing. Science 159, 1319–1327. doi: 10.1126/science.159.3821.1319
  • Cook, P., Rouse, A., Wilson, M., and Reichmuth, C. J. (2013). A california sea lion (Zalophus californianus) can keep the beat: motor entrainment to rhythmic auditory stimuli in a non vocal mimic. J. Comp. Psychol. 127, 1–16. doi: 10.1037/a0032345
  • de Waal, F. B. (1988). The communicative repertoire of captive bonobos (Pan paniscus), compared to that of chimpanzees. Behaviour 183–251. doi: 10.1163/156853988X00269
  • Fitch, W. T. (2013). Rhythmic cognition in humans and animals: distinguishing meter and pulse perception. Frontiers in systems neuroscience, 7.
  • Fitch, W. T. (2015). “The biology and evolution of musical rhythm: an update,” in Structures in the Mind: Essays on Language, Music, and Cognition in Honor of Ray Jackendoff, eds D. I. Toivonen, P. Csúri, and E. van der Zee (Cambridge, MA: MIT Press), 293–324.
  • Fuhrmann, D., Ravignani, A., Marshall-Pescini, S., and Whiten, A. (2014). Synchrony and motor mimicking in chimpanzee observational learning. Sci. Rep. 4:5283. doi: 10.1038/srep05283
  • Gamba, M., Torti, V., Estienne, V., Randrianarison, R. M., Valente, D., Rovara, P. & Giacoma, C. (2016). The indris have got rhythm! Timing and pitch variation of a primate song examined between sexes and age classes. Frontiers in Neuroscience, 10.
  • Grafe, T. U. (1999). A function of synchronous chorusing and a novel female preference shift in an anuran. Proc. R. Soc. Lond. B Biol. Sci. 266, 2331–2336. doi: 10.1098/rspb.1999.0927
  • Greenfield, M. D. (2005). Mechanisms and evolution of communal sexual displays in arthropods and anurans. Adv. Stud. Behav. 35, 1–62. doi: 10.1016/S0065-3454(05)35001-7
  • Greenfield, M. D. (1994). Cooperation and conflict in the evolution of signal interactions. Annu. Rev. Ecol. Syst. 25, 97–126. doi: 10.1146/annurev.es.25.110194.000525
  • Greenfield, M. D., and Roizen, I. (1993). Katydid synchronous chorusing is an evolutionarily stable outcome of female choice. Nature 364, 618–620. doi: 10.1038/364618a0
  • Greenfield, M. D., Esquer-Garrigos, Y., Streiff, R., and Party, V. (2016). Animal choruses emerge from receiver psychology. Sci. Rep. 6:34369. doi: 10.1038/srep34369
  • Grondin, S. (2010). Timing and time perception: a review of recent behavioral and neuroscience findings and theoretical directions. Attention, Perception, & Psychophysics, 72(3), 561-582.
  • Haimoff, E. H. (1986). Convergence in the duetting of monogamous Old World primates. J. Hum. Evol. 15, 51–59. doi: 10.1016/S0047-2484(86)80065-3
  • Hall, M. L. (2009). A review of vocal duetting in birds. Adv. Stud. Behav. 40, 67–121. doi: 10.1016/S0065-3454(09)40003-2
  • Hartbauer, M., and Römer, H. (2014). From microseconds to seconds and minutes-time computation in insect hearing. Front. Physiol. 5:138. doi: 10.3389/fphys.2014.00138
  • Lameira, A. R., Hardus, M. E., Bartlett, A. M., Shumaker, R. W., Wich, S. A., and Menken, S. B. (2015). Speech-Like Rhythm in a Voiced and Voiceless Orangutan Call. PLoS ONE 10:e116136. doi: 10.1371/journal.pone.0116136
  • Mann, N. I., Dingess, K. A., and Slater, P. (2006). Antiphonal four-part synchronized chorusing in a Neotropical wren. Biol. Lett. 2, 1–4. doi: 10.1098/rsbl.2005.0373
  • Merchant, H., Grahn, J., Trainor, L., Rohrmeier, M., and Fitch, W. T. (2015). Finding the beat: a neural perspective across humans and non-human primates. Phil. Trans. R. Soc. B 370:20140093. doi: 10.1098/rstb.2014.0093
  • Merker, B. H., Madison, G. S., & Eckerdal, P. (2009). On the role and origin of isochrony in human rhythmic entrainment. Cortex, 45(1), 4-17.
  • Murphy, M. A., and Schul, J. (2017). Does leadership indicate male quality in Neoconocephalus katydids? Behav. Ecol. Sociobiol. 71:22. doi: 10.1007/s00265-016-2253-5
  • Nagasaka, Y., Chao, Z. C., Hasegawa, N., Notoya, T., and Fujii, N. (2013). Spontaneous synchronization of arm motion between Japanese macaques. Sci. Rep. 3:1151. doi: 10.1038/srep01151
  • Norton, P., & Scharff, C. (2016). “Bird Song Metronomics”: Isochronous Organization of Zebra Finch Song Rhythm. Frontiers in Neuroscience, 10.
  • Patel, A. D., Iversen, J. R., Bregman, M. R., & Schulz, I. (2009). Experimental evidence for synchronization to a musical beat in a nonhuman animal. Current biology, 19(10), 827-830.
  • Ravignani, A. (2015). Evolving perceptual biases for antisynchrony: a form of temporal coordination beyond synchrony. Front. Neurosci. 9:339. doi: 10.3389/fnins.2015.00339
  • Ravignani, A. (2017). Interdisciplinary debate: agree on definitions of synchrony. Nature 545:158. doi: 10.1038/545158c
  • Ravignani, A., Bowling, D. L., and Fitch, W. T. (2014). Chorusing, synchrony and the evolutionary functions of rhythm. Front. Psychol. 5:1118. doi: 10.3389/fpsyg.2014.01118
  • Ravignani, A., and Cook, P. (2016). The evolutionary biology of dance without frills. Curr. Biol. 26, R878–R879. doi: 10.1016/j.cub.2016.07.076
  • Ravignani, A., and Norton, P. (2017). Measuring rhythmic complexity: a primer to quantify and compare temporal structure in speech, movement, and animal vocalizations. J. Lang. Evol. doi: 10.1093/jole/lzx002
  • Ravignani A, Honing H and Kotz SA (2017) Editorial: The Evolution of Rhythm Cognition: Timing in Music and Speech. Front. Hum. Neurosci. 11:303. doi: 10.3389/fnhum.2017.00303
  • Ryan, M. J., Tuttle, M. D., and Taft, L. K. (1981). The costs and benefits of frog chorusing behavior. Behav. Ecol. Sociobiol. 8, 273–278. doi: 10.1007/BF00299526
  • Rorato, A. C., Araujo, S. B., Perez, D. M., and Pie, M. R. (2017). Social cues affect synchronization of male waving displays in a fiddler crab (Crustacea: Ocypodidae). Anim. Behav. 126, 293–300. doi: 10.1016/j.anbehav.2017.02.014
  • Rose, G. (2014). Time computations in anuran auditory systems. Front. Physiol. 5:206. doi: 10.3389/fphys.2014.00206
  • Sismondo, E. (1990). Synchronous, alternating, and phase-locked stridulation by a tropical katydid. Science 249, 55–58. doi: 10.1126/science.249.4964.55
  • Spierings, M., Hubert, J., and ten Cate, C. (2017). Selective auditory grouping by zebra finches: testing the iambic–trochaic law. Anim. Cogn. doi: 10.1007/s10071-017-1089-3
  • Strogatz, S. H., and Stewart, I. (1993). Coupled oscillators and biological synchronization. Sci. Am. 269, 102–109. doi: 10.1038/scientificamerican1293-102
  • Tinbergen, N. (1963). On aims and methods of ethology. Z. Tierpsychol. 20, 410–433. doi: 10.1111/j.1439-0310.1963.tb01161.x
  • Turvey, M. T., Schmidt, R. C., Rosenblum, L. D., & Kugler, P. N. (1988). On the time allometry of co-ordinated rhythmic movements. Journal of Theoretical Biology, 130(3), 285-325.
  • van der Aa, J., Honing, H., and ten Cate, C. (2015). The perception of regularity in an isochronous stimulus in zebra finches (Taeniopygia guttata) and humans. Behav. Process. 115, 37–45. doi: 10.1016/j.beproc.2015.02.018
  • Wilson, M., and Cook, P. F. (2016). Rhythmic entrainment: why humans want to, fireflies can’t help it, pet birds try, and sea lions have to be bribed. Psychon. Bull. Rev. 23:1647. doi: 10.3758/s13423-016-1013-x
  • Yu, L., and Tomonaga, M. (2015). Interactional synchrony in chimpanzees: examination through a finger-tapping experiment. Sci. Rep. 5:10218. doi: 10.1038/srep10218
Advertisements